Electrical Energy Consumption

THIS MEANS YOU

Some devices require alot of electrical energy to function whereas some need little

Can you name a device that uses alot of electrical energy? ____ Dryer__

One that uses little electrical energy? ____Flashlight, remote control____

Power is a measure of how much energy is used or produced per unit time.

Calculating Power

In order to calculate the power rating of a device we need to find out it's current and voltage.

*note- the units of power (J/s) is expressed as a Watt since 1 J/s = 1 W

We can also derive the first equation from this one using the formulas for voltage and current from our previous note:

$$P=J/C \times C/s = J/s$$

Power Questions

1) The Apple IPhone has a 3.7 V battery and when running draws a current of 0.54 A. What is it's power consumption?

S:
$$P = 3.7V \times 0.5A$$

= $2W$

2) Find the power rating of a toaster if it draws 5 A when plugged into a 110V socket.

Calculating the cost of electrical energy consumption

	_		_							
エムム	mriaa 111a r	aasi far th	ne amount of	ala atriaits		01/05/	manufb d		m thraa	faatara
1110	DIICE WE I	120 IOI II	ie amonini oi	PIPCILICITY	/ WE LISE		THEOTHER CO	anenns n	11 11111111111	Taciois
1110	PIIOC WC P	July 101 ti	ic airidairt di	CICCULICITY		CVCIY	THOUGHT OF	cpenae e		Idoloid

- 1) The __power___ rating__ of the devices (eg
- 2) The ___time____ that the device is used for
- 3) The ___cost___ _rate__ set by the power company

To calculate cost used the following formula

Cost = power x time used x cost per
$$kW \cdot h$$

Cost Questions

1) Joey uses his video game console for 1.5 hours. If the power consumption of the device is 0.10 kW and the rate cost is 8.8 ϕ per kW·h, calculate how much the cost would be in cents.

2) The power company in Quebec charges 5.5 ¢ per kW·h. If a ski lift operator runs her ski lift for 10 hours and the power rating of the lift is 3000 kW, calculate the cost in dollars.

Cost = (3000kW)(10h)(5.5cents/kWh) = 165 000 cents = \$1650

2

Percent Efficiency

Most electrical devices convert electrical energy to some other form (light, heat, sound, movement of a motor...)

The energy conversion is never 100%, much energy is lost

The ability of a device to convert electrical energy (input) into useful energy (output) is called its "Percent Efficiency"

The formula for calculating percent efficiency is:

1) An electric kettle requires 210 000J of energy to heat up a pot of water until it boils. If it takes 184 000 J of energy to heat the water, what is the percent efficiency of the kettle?

2) a) A light gives off 54 000 J of light energy but requires 80 000 J to accomplish this. Find the percent efficiency. b) Can you suggest where the lost energy goes to?